
        SmilerShell Help
This helpfile contains information on 32-bit SmilerShell/95 for Windows 95 and NT, and 
16-bit SmilerShell for Windows 3.1.    Choose a topic on which you'd like more 
information:

Keyboard Shortcuts 
Quick Start / Hints And Tricks 
How To Order SmilerShell 

Introduction 
Why Is This A Shell? 
Installing SmilerShell 
Uninstalling SmilerShell 
What Happens When You Start SmilerShell 
Right-Click The Button: The Apps Menu 
Menu Items 
Submitting Commands
Command Completion 
Keep Explorer In Sync With SmilerShell/95 Automatically
Command History Button: Lists All Commands 
Using Arrows To Retrieve Previous Commands 
Editing Commands 
The FindFile Dialog 
Size Of Window 
Getting Rid Of Inactive Windows 
DOS Commands: Fullscreen Or Windowed 
About Internal DOS Commands 
Aliases 
The Settings Dialog: Set Preferences 
Command Stack Files 
Choosing Fonts And Colors 
The Initialization File 
Using SmilerShell On A Network 
The ONECMD Option: Set Up Custom Desktop Icons To Do Any Task 

Built-In SmilerShell Commands 
ALARM: Alarm Clock With Reminder Message 
ALIAS and UNALIAS: Create, Change, Remove Aliases 
DC: Directory Change The Fast Way  
FIND: Search For Files On Disk 
HISTORY: Display Command History 
PATH: Change The Search Path 
SHOW: An Alternative To DIR 
Using 4DOS/NDOS Internal Commands 



Notices 



Introduction
Windows is great, but sometimes it can be awkward.    Getting to the icon to launch an 
application isn't always easy.    Finding files is difficult at best.    There's no good way to 
keep an eye on important systemwide resources.    And even when you have all the 
pieces, sometimes it'd be faster to just type a command -- but how?

That's what SmilerShell is for.

SmilerShell is a compact yet powerful Windows control center that takes no space on 
your desktop.    Until you need it, SmilerShell is just a tiny button that hops into the 
titlebar of whichever app you're working in.    Right-click the button to see your 
configurable "Apps" list and launch a new program, or switch to a currently-running task.
Or left-click the button to reveal the ultimate Windows command line, which supports 
pipes, redirection, and internal DOS commands (and of course runs Windows programs
too).

SmilerShell has the best command line you've ever seen, as if the plain-vanilla DOS 
prompt was enhanced by lots of handy utilities. It runs anything (DOS programs, 
Windows programs, or DOS internal commands).    It features Command Completion, so
you can run an app even if you can’t remember its name.    It’ll run multiple commands 
on one line.      It has a built-in command line editor with history and search, aliases 
(type-in or on the function keys),    a built-in fast-directory-change utility that works 
across multiple drives, and many helpful Windows functions like a calendar/clock in the 
title bar and a real-time system resources report in the menu bar.    After it pops up it's 
still a very compact window, but to make it even smaller you can toggle away the menu 
or title bar. 

SmilerShell's built-in 'find' function lets you search for a file by name, or contents, or 
both.    It lists all matching files and lets you either go to a file's directory, or fetch its 
name into the command line, ready to run, or perhaps to use as another program's 
parameter.

SmilerShell's aliases are short commands that are replaced with longer commands.    
Aliases can be like regular commands, just type them in.    Or they can be on function 
keys, hit the F-key and it runs, no need to press Enter.

SmilerShell's fast directory-change utility is called DC.    Just type DC and the first few 
characters of the directory you want to be in, and SmilerShell takes you there.    If your 
command is ambiguous, a window pops up, letting you choose which directory you 
want.    This works across as many multiple drives as you tell it to be aware of.

These are just a few of the features of SmilerShell.    The Quick Start section has a 
description of each major feature.    And of course all features are documented in the 
individual sections of this manual.



So, welcome to SmilerShell!    You're going to like it here.

Related Topics:
Quick Start / Hints And Tricks 
Why Is This A Shell? 
The Initialization File 
Menu Items 
Submitting Commands 
Using Arrows To Retrieve Previous Commands 
Aliases 
DC: Directory Change The Fast Way  
The Apps Menu 
Command Stack Files 



How To Order SmilerShell
Thank you for trying SmilerShell.    You are welcome to test the fully-functional 
evaluation version for 30 days.    That is, you can run the program on 30 different dates.  
These dates do not have to be consecutive calendar days.    If you don't run SmilerShell 
on a particular date, it doesn't count against your 30 days.

The evaluation version of SmilerShell contains all the features found in the actual 
product.    You have plenty of time to try it under actual working conditions on your own 
system, to see if it meets your needs.    After the trial period, you must either purchase 
SmilerShell or remove it from your system.
 
SmilerShell is available in two versions.    There's a 16-bit version for Windows 3.1, and 
a 32-bit version for Windows 95 and NT.    To order, send $29.95 (plus shipping) for 
either version, or $49.95 (plus shipping) for both versions, to:
 
Bardon Data Systems
1023 Key Route Blvd.
Albany, CA 94706-2321

Payment: You can pay with cash, check, money order, MasterCard, or Visa.
Shipping: Please enclose $5 for shipping and handling.
Outside North America: Please add an additional $6 overseas shipping surcharge.

With a MasterCard or Visa you can also order SmilerShell by phone, either directly from
Bardon at (510) 526-8470 (weekdays 9 to 5 California time) or through our toll-free 
telephone order-taking service (800) 242-4775 (weekdays 7 to 6 Central time), or 24 
hours a day by fax at (713) 524-6398 or on CompuServe at 72340,375.    Include card 
number, expiration date, and name as it appears on the card.

SmilerShell is also available through distributors worldwide.    Details, prices, and 
addresses are in the file DEALERS.TXT that came with this package.
 
If ordering through Bardon, you can print and mail orderfrm.wri, the order form that 
came with this package.    It's in Windows Write format.    If you order with a MasterCard 
or Visa by phone at (510) 526-8470, you'll be given your registration number 
immediately so you can get rid of those reminder screens right away.    Or simply mail in 
your card number and expiration date.

When you order, you'll get a copy of the most recent version of SmilerShell, a 
registration number that will turn off the reminder screens, a printed manual, support, 
and update notices.

You will also get a FREE copy of Reverend Lowell's Treasury of Humor, Volume 1: 
"He Who Laughs, Lasts!" Reverend Lowell's Treasury contains thousands of 
humorous anecdotes collected by Reverend Lowell during his long career as an 



ordained minister.    After thirty years of public speaking from the pulpit, the podium, and 
on television, he has amassed over 200,000 items, and Reverend Lowell's Treasury 
represents the "cream of the crop."    These are Reverend Lowell's favorite funny 
stories, revealing quotes, interesting anecdotes, and zingy one-liners.    And there's 
nothing that would be unsuitable in any public setting.    There are plenty of items to 
choose from.    Each volume of the Treasury covers a different topic, and contains at 
least as many items as you'd find in a full-size book.    Many are illustrated in color or 
black-and-white.    You can search for any item by keyword or first line.    Or simply 
browse through every item page by page.

In addition,you will get these extra FREE bonuses:    Two more handy Bardon programs 
(WHATSNEW lists files not yet backed up, or directories containing such files; PR and 
PRFILTER format output for printing, and add an informative header), discount on PsL 
software-by-mail (up to 2/3 off!), free CompuServe startup kit, and whatever other 
goodies will fit on the disk.



What Happens When You Start SmilerShell
When you start SmilerShell, it first reads its initialization file, which stores your 
SmilerShell preferences as you indicated in the Settings dialog and through menu 
switches.    By default this is the file "smishell.ini" in the same directory as the 
SmilerShell program.    However, you can specify a name and directory for this on the 
SmilerShell icon's 'Properties' command line.    This is especially useful on a network, 
where you might have one copy of the program on a server, and many users who want 
to maintain their own individual setup preferences.    See Using SmilerShell On A 
Network.

Values are set, based on the entries in the initialization file.    The list of commands you 
issued last time is restored (handy for searching instead of typing) as well as any 
command-stack file you have set up.

If you start SmilerShell without an initialization file, you'll be asked if you'd like 
SmilerShell to create one and fill it with reasonable initial values.    You can change 
these settings at any time with the Settings dialog on the Options menu.

Next, SmilerShell looks for DC information.    It will rescan your directory structure if 
you've set this in the Settings dialog.    If not, SmilerShell looks for the file it creates 
when you Scan Directories.    By default it is named "smishell.dir" and is in the same 
directory as the initialization file.    You can specify a different name and directory for it in
the Settings dialog.

Then SmilerShell gets the current PATH from the operating system.    It uses this to run 
your commands.    If you like, you can change SmilerShell's copy of the PATH.    See 
PATH: Change The Search Path for details.

If you have set Save State in the Settings dialog, SmilerShell sets itself up the way you 
left it    last time, and changes to the directory you were in when you last used it.

If you have set SmilerShell/95 to Sync With Explorer, and if Explorer is running in 
Windows 95, SmilerShell changes Explorer's current directory to synchronize it with its 
own.

Finally, if you have set Hide SmilerShell in the Settings dialog, SmilerShell hides the 
command line window, and if you have set Show Button, it puts a little button into the 
title bar of your currently-active application.    This button will follow you around to 
whatever application you activate, so SmilerShell is always just a mouse click away.    
(Note: occasionally a Windows window is set up to be    "always on top."    These 
"topmost" windows will set themselves on top of SmilerShell's button, hiding it.    The 
button will reappear when you switch to a non-topmost window.) 

Related Topics:
The Settings Dialog 



DC: Directory Change The Fast Way 



Menu Items
SmilerShell has five top-level menu items: File, Edit, Options, Apps, and Help.    If the 
titlebar button is not disabled, there is a Hide! menu item, which hides the command 
line window.    Using the Options menu, you can also toggle another item onto the 
menu bar: a real-time report of available Windows memory and resources.

The evaluation version of SmilerShell has a How To Order menu item which provides 
ordering and purchase information.

Related Topics:
The File Menu 
The Edit Menu 
The Options Menu 
The Apps Menu 
The 'How To Order' Menu Item 
The Hide! Menu Item 
The Help Menu 
The System Resources Menu Item 
Keyboard Shortcuts 



The File Menu
The File menu starts with the traditional items New, Open, Save, and Save As.    These
items let you manipulate your current command stack (list of stored commands).    Next 
on the File menu are the items DOS Box, Run, Aliases, Find File, Command History,
Command Completion, Scan Directories, and of course Exit.    Here's what these 
commands do.

New clears the command stack.    That is, it makes your list of previously issued 
commands go away.    This lets you restart your command history.

Open lets you choose a command-stack file and read it in.    It optionally clears the 
current command history before it reads in a new command stack from the file.    
SmilerShell assumes that it's an ASCII text command-stack file, with one command on 
each line.

Save saves your current command stack to a file using the command-stack file name 
specified in the Settings dialog.    The commands are saved in a plain text ASCII file, 
one command per line.    If you haven't explicitly set a name yet, the name "smishell.stk"
is used.    By default it's assumed to be in the same directory as the ini file.

Save As asks for a filename, then saves the current command stack to that file.    The 
commands are saved in a plain text ASCII file, one command per line.

DOS Box gives you a DOS session, full screen or windowed depending on how you've 
set the Options menu item DOS In Window.    Type Exit at the DOS prompt to return to 
SmilerShell.

Run lets you choose a program from a file/directory dialog box.    The filename you 
choose is placed on SmilerShell's command line, where you can add any needed 
parameters before submitting it.

Aliases brings up a dialog that shows you what command substitutions are currently in 
effect.    It shows both your command-line aliases and your function-key aliases.    If you 
don't like the way they look, there's a button to open the Settings dialog, where you can 
change them.    You can run an aliased command from the Aliases list by clicking on it, 
or fetch its name into the main window for editing.    You can also bring up the Aliases 
dialog by typing ALIAS on the command line.

Find File brings up a dialog box that lets you search for files by name or contents.    You
can also bring up this same dialog box by typing FIND on the command line, optionally 
with parameters giving the target filename and file contents.    But to type the command, 
you must first clear the command line.    The advantage of the Find File menu item is 
that it lets you add a 'found' file's name to existing command line text, perhaps as a 
parameter to a command you are building.



Command History shows a list of every command you ran from the command line 
during this session, plus the restored list of commands you issued during the last 
session, plus any commands preloaded from a command-stack file at startup.    This is 
the same dialog you get by clicking on the Command History Button.    You can submit a
command from here by clicking on it, or fetch it into the main window for editing.    
There's also a Settings pushbutton.

Command Completion will find any commands that match what you type.    Just type 
the first few letters of a command name, with wildcard characters (* and ?) if you like.    
Then click this menu item or hit the Tab key.    SmilerShell will search your PATH for any 
commands that match.    It'll even find matching files with runnable File Association 
extensions.

Scan Directories generates an internal list of all directories on each 'Drive To Scan For 
DC Data' you've listed in the Settings dialog (default is to just scan drive C).    It saves 
this internal list to the DC info file, either a filename you specify or the default 
"smishell.dir" in the SmilerShell ini file's directory.    The DC "/r" parameter can also 
generate this list on the fly when you use the DC command.

Finally, the File menu has an Exit item which terminates SmilerShell.



The Edit Menu
The Edit menu starts with the standard Windows features Undo, Cut, Copy, and Paste 
for sending information to and from the Windows clipboard, and Clear to delete selected
text in the input window.

Remove Inactives searches out and closes all the inactive windows (those with 
"Finished..." or "[Inactive..." or "(Inactive..." in the title) on your desktop.    If you've 
toggled the Options menu item Inactives Stay Visible to display inactive DOS 
windows after their command terminates, you'll find that these windows accumulate 
quite rapidly.    Remove Inactives (or its keyboard equivalent Alt+R) makes them all go 
away.

Button Exceptions is how you tell SmilerShell what to do about a single application 
with an unusual screen layout.    Usually SmilerShell can figure out where to place its 
titlebar button.    But if one of your other applications has a non-standard layout where 
its titlebar ought to be, the button may be placed over something important.    To fix this, 
select Button Exceptions.    The cursor changes to the crosshairs style.    Click the 
mouse anywhere in the problem app's window, at the point where you'd like the button 
to be placed (that is, the distance from the upper left corner of the app's window).    If 
you change your mind, press Escape to abort.    This information is saved in 
SmilerShell's ini file from session to session.    To change a Button Exceptions entry, 
select the menu item again and click on a new location in the same problem application.
You can remove an entry entirely from the Settings dialog.

Button Offset moves the button left or right within the titlebar of all apps.    Unlike 
Button Exceptions, setting Button Offset affects the button's location in every app, 
not just the one app you click on.    This is handy if you have another program that also 
puts something in every active app's titlebar.    To set this up, select the Button Offset 
item, and choose whether you want to offset from the left or the right side of the window.
The cursor changes to the crosshairs style.    Click the mouse in any app's window.    
From then on, the titlebar button will be displayed that distance from the chosen (left or 
right) border in every app not listed as a Button Exception.    If you change your mind, 
press Escape to abort.    This information is saved in SmilerShell's ini file from session to
session.    To change the Button Offset, select the menu item again and click on a new 
location in any application.    To remove it entirely, choose Button Offset and click on 
the Default Offset menu item.

Related Topics:
The Options Menu 
The Settings Dialog 



The Options Menu
The Options menu items toggle on and off various SmilerShell features.    Heavily-used 
features have individual menu items under the Options menu.    Less-used or 'startup' 
features are listed together in the Settings dialog, at the bottom of the Options menu.

Date/Time Clock (Alt+C) puts a date/time clock in the title bar.    You can set the date 
and time format with the Options menu's Settings dialog.    You can also set an alarm 
and have it display a message when it goes off.    See ALARM: Alarm Clock With 
Reminder Message.

System Resources (Alt+S) shows available system resources in the menu bar.    If 
System Resources is toggled on, and the menu is toggled off, the resources report will 
be displayed in the command line window.    Press any key and the command line 
comes back just as you left it.    The cursor is where you left it, selections are still 
selected, and the key you pressed is typed into place in the command text.

Directory (Alt+D) show the current directory in the SmilerShell title bar.

Overtype (Alt+O) toggles the command line between insert mode and overtype mode.   
When it's in overtype mode a flag appears in the title bar, over the second 'e' in 
'SmilerShell'.

Topmost (Alt+T) makes SmilerShell a topmost window, so even when inactive, it sits on
top of other windows.

Title Bar (Alt+L) hides the title bar.    This saves screen space.    To move SmilerShell on
the screen without a title bar, click the right mouse button in the edit area and hold it 
down while moving the window.

Menu (Alt+M) hides the menu bar, making SmilerShell even smaller.    When the menu 
bar is hidden, a "Show SmilerShell Menu" item is added to the System menu.    Click it    
to get the menu bar back.    Or type Alt+M from the keyboard.    The keyboard 
accelerators (Alt+C, Alt+D, etc.) continue to work properly when the menu is hidden.

Inactives Stay Visible (Alt+I) controls whether, after SmilerShell runs a DOS 
command, the command's inactive window sticks around or goes away.    Keeping those
inactive windows around can be quite handy, letting you see the results of previous 
commands, but they do eventually clutter your screen.    True, you can make them all go
away using the Remove Inactives item on the Edit menu (or simply type Alt+R).    But if
you don't want to see them in the first place, you can simply toggle Inactives Stay 
Visible off.    Or to run one command as if Inactives Stay Visible is set to the opposite 
of its current value, start that command with an asterisk (for example *dir).    See 
Submitting Commands. 

DOS In Window (Alt+W) controls whether    SmilerShell's DOS commands run 



fullscreen or in a window.    Or to run one command as if DOS In Window is set to the 
opposite of its current value, start that command with a right-bracket (for example 
>copy foo.bat b:).    See Submitting Commands. 

Sync With Explorer (Alt+E) to automatically change Explorer's current directory 
whenever you change SmilerShell/95's directory with CD or DC.    This is especially 
handy when using DC.    With just a few keystrokes you can instantly navigate 
throughout your system, even across drives.    Toggle this switch and Explorer tags 
along behind.    No more clicking through directory trees!    You won't believe how 
convenient this is.

Foreground Color This lets you set the color of the edit control's text.    Pick a standard 
color, or create a custom color, but note that if you pick a dithered color, Windows uses 
the nearest solid color instead.    See Choosing Font And Colors. 

Background Color This lets you set the edit control's background color.    Pick a 
standard color, or create a custom color.    You can get a very interesting effect by 
choosing a dithered background color.    As with Foreground Color, if you pick a 
dithered color, Windows uses the nearest solid color behind actual text characters.    But
it uses your chosen dithered color in the rest of the edit area.    This creates an unusual 
raised effect as you type.    Try it!    See Choosing Font And Colors. 

Font    You can set the command line font to any available style and size.    Because of 
Windows limitations, italic fonts don't look as good as bold or normal fonts.    See 
Choosing Font And Colors. 

Settings This brings up SmilerShell's Settings dialog.    There are check boxes to set up
startup options, titlebar button behavior, confirmation and save-state at exit, command 
processor usage, the date and time format in the titlebar clock, and other preferences.    
All your Button Exceptions are listed, and can be deleted if desired.    You can also 
add, edit, or delete aliases (or you can do this with the ALIAS and UNALIAS 
commands), set restore time, list the drives DC should scan, and give startup filenames.
See The Settings Dialog for full details.



The Help Menu
The Help menu has three items: Help, Popup Hints, and About SmilerShell.

Use the Help item (or press F1) to get on-line help about SmilerShell.

Choose Popup Hints (or press Alt+F1) to learn interesting and useful ways of using 
SmilerShell.
 
The other item, About SmilerShell, is a typical About box.    It gives the SmilerShell 
version number and contact information.



The System Resources Menu Item
When you toggle this on, using the Options menu item System Resources, the 
System Resources Menu Item provides a report on key Windows resources.    It 
changes in real time to show your currently available resources.    Although it is on the 
menu bar, it has no menu associated with it.

If System Resources is toggled on and the menu is toggled off, the resources report 
will be displayed in the command line window.    Press any key and the command line 
comes back just as you left it.    The cursor is where you left it, selections are still 
selected, and the key you pressed is typed into place in the command text.

The 16- and 32-bit versions of SmilerShell display different resources which are 
important in their respective environments.    SmilerShell/95 (for Win95 and NT) displays
available virtual memory (physical memory plus swapfile), memory load percent free, 
and disk space percent free on the current drive.    SmilerShell for Windows 3.1 displays
available virtual memory (physical memory plus swapfile), GDI resources, and User 
resources.

You may wonder why the 16-bit SmilerShell doesn't display System resources, as 
displayed in Program Manager's About box and other places.    It turns out that "System 
resources" is just Windows shorthand for "the smaller of User and GDI resources."    
Why take up screen space with information you've already got?



Submitting Commands
If SmilerShell is hidden, click the titlebar button with the left mouse button.    The 
command line window will pop up and will be given the input focus.    (If you right-click, 
the Apps menu will pop up next to the button, ready for you to click on an app and run 
it.)    You can also double-click the SmilerShell startup icon at any time to reveal the 
command line window.

When SmilerShell has the input focus, simply type any command, just as you would at 
the DOS prompt.    You can run Windows programs, DOS programs, or DOS internal 
commands like DIR or TYPE.    You can use CD or CHDIR to change SmilerShell's 
current directory.    (Or you can change directory a lot faster with the built-in SmilerShell 
command DC.)    You can also use the built-in SmilerShell commands FIND (find files by
name or contents), SHOW (display filenames and select one into the command line), 
ALARM (alarm clock with reminder message), ALIAS (list or change aliases), UNALIAS 
(remove aliases), and HISTORY (list full command history).

SmilerShell supports the 4DOS/NDOS enhanced command processor.    You can use 
the Settings dialog to have SmilerShell handle all the 4DOS/NDOS commands that 
might be useful from a Windows command line.    In those cases where a supported 
4DOS or NDOS command is the same as a SmilerShell command (alias, history, 
unalias), start the command with an equals sign to pass it to the command processor 
unchanged (for example, =history).    That is, treat it like a SmilerShell alias.

SmilerShell supports "drag and drop," so you can drop files onto its window from File 
Manager, Explorer, or any other drag-and-drop server.    The filenames will be added at 
the end of the current command line.    SmilerShell adds them in the form that takes up 
the least amount of space on the line.    So, for example, files in the current directory will
have a filename but no path.

Because SmilerShell supports File Associations, often you only have to give the 
filename, without naming the program to run it.    SmilerShell can in these cases tell 
what program to run, just    by looking at the filename.      For example give 
"FILENAME.WRI" and SmilerShell knows to run Windows Write on this file.    This works
very nicely with SHOW or FIND: use them to pick a file, fetch the filename into the 
commandline, then just press Enter to run the proper program with that file.

SmilerShell supports command completion.    You can give the first few letters of a 
command name (with wildcards * and ? if you like) and hit Tab to have it search your 
Path for matching runnable commands and files with registered File Association 
extensions.

Windows NT and Windows 95 allow long filenames with embedded spaces.    To have 
SmilerShell/95 see such a name as one indivisible unit, enclose it in double-quotes.    
For example, you could give the command



"This is a filename.exe" param1 param2 param3

As with all SmilerShell commands, you don't need to give the file extension of 
executable programs (com, bat, exe, pif, lnk).    And, yes, SmilerShell/95 will correctly 
handle PIF and LNK "Shortcut to..." files.    You can type them in or simply drop them 
onto the command line.

DOS commands will run fullscreen or in a window, depending on how you have set    the
DOS In Window menu item.

Or you can start any command with a right-bracket to toggle DOS In Window for just 
that one command (for example >copy foo.bat b:).

If you have toggled Inactives Stay Visible to allow it, then after SmilerShell runs a 
submitted DOS command, the final results are displayed in an inactive window.    That 
is, a window with "Finished..." or "[Inactive..." or "(Inactive..." in the title.

When an inactive window gets the focus as a result of    running a command, 
SmilerShell actively takes the focus back again, so you can continue running 
commands from SmilerShell.    Because Windows requires it, SmilerShell pauses briefly 
before attempting to take back the focus.    By default this pause is 1000 milliseconds (1 
second), but you can set it by using the Restore Time option in the Settings dialog.    
How fast can you get away with on your system?

You can use the Edit menu option Remove Inactives (or simply press Alt+R) to destroy 
all the inactive windows on your desktop.

Or you can start a command with an asterisk (for example *copy foo.bat b:) to toggle 
Inactives Stay Visible for just this one command.

Every command you submit is tested to see if it matches anything on your list of aliases.
If the first word of your command matches an alias, the replacement for that alias is 
substituted for the first word of the command you typed.    Your aliases can have 
parameters (%1, %2, etc, like batch files) which are substituted into them.

Or to skip alias testing for this one command, start it with a equals sign (for example 
=list).    The command line will be run just as you typed it, with no alias substitution.

An easy way to remember what each of the three command line flags does is:

*    Flash! It's gone! (or, Flash!    A window appears!)
>    Moves from larger to smaller, or smaller to larger
=    Does just what it says (no alias substitution)

The three flags (* > =) can be in any order.    For example, ">*=dir *.exe" could be run.



You can type multiple commands on one command line.    Hit Enter and they are 
submitted in order.    Unlike most things in Windows, they are run synchronously -- the 
next command is submitted only after the previous one completes.    Since the first of 
your multiple commands will always finish before the second one starts, you can write 
sequential multi-command aliases that act like batch files.    They can even have 
parameters.

For example, you could run this from the command line:

d: ^ cd \dos ^ *dir *.exe /w ^ dc fle ^ >myprog param1 param2 param3

Or you could set up this alias:

foo = d: ^ cd \dos ^ *dir *.%1 /w ^ dc %2 ^ >myprog param1 param2 %3

These commands both change drive, change directory, do a DIR, change directory 
again, and run a program.    The first might be typed on the fly from the command line.    
The second is an alias you set up ahead of time.    Notice the use of % parameters.    
Here is how they'd work.    If you gave the command foo bat mydir otherParam it 
would be turned into d: ^ cd \dos ^ *dir *.bat /w ^ dc mydir ^ >myprog param1 
param2 otherParam.    See Aliases for more on this.

By default these multi-commands are separated with a caret [^] but you can use the 
Settings dialog to select any other character you want.

The three command line flags can be used with any of the individual commands.      
Since each command is separate, each can have its own flags.    Aliases and 
parameters can be used in the usual way in each individual command.

When SmilerShell finds a PIF for any program, it uses the PIF’s Inactives Stay Visible 
and DOS In Window settings instead of its own, assuming that if you set up a PIF you 
did so for a reason.

SmilerShell uses the command processor listed in the COMSPEC environment variable.
This is usually DOS’s COMMAND.COM, but some people use alternate processors 
such as 4DOS or NDOS.    Sometimes the alternate processor has its own PIF file, for 
example 4DOS.COM may have a 4DOS.PIF file.    This PIF will prevent SmilerShell from
controlling the Inactives Stay Visible and DOS In Window settings itself, since 
SmilerShell will defer to the settings given in the PIF.    To change this, delete the PIF.

Related Topics:
Using Arrows To Retrieve Previous Commands 
Editing Commands 
DOS Commands: Fullscreen Or Windowed 
The Settings Dialog 



DC: Directory Change The Fast Way  
SHOW: An Alternative To DIR 
FIND: Search For Files On Disk 
Command Completion



Using Arrows To Retrieve Previous Commands
When you submit a command by pressing Enter, SmilerShell stores it internally in a 
command stack.    To retrieve a command, press the up/down arrow keys until the 
command you seek is displayed.    Press the up-arrow to see the previous command, or 
the down-arrow to see the next command.

You can search for a particular previous command to be displayed.    Let's say you want 
to find the command "dir \windows\system\*.ini /p" that you ran some time before.    Just 
type D before you press the up-arrow.    SmilerShell will find the most recent command 
that started with D.    You are not limited to just the first letter; you can type as much of 
the previous command as you need to specify the match you want.    If the first match 
isn't the command you are looking for, press that arrow key again until the command 
you want comes up.    The same match-string is used until you type something that 
changes a displayed command.    Matches are not case-sensitive.    The command-line 
flags (* > =) are ignored when checking for a match.

To simply retrieve all commands in order, just make sure the command line is blank 
when you first press the arrow key.    You can clear the command line by pressing 
Escape.

You can also click the Command History button, or give the command HISTORY, or use 
the File menu's List Commands item to gain access to your entire command history.    
This includes the restored list of commands you issued during the last session, plus any
commands preloaded from a command-stack file at startup

Related Topics:
Submitting Commands 
Editing Commands 



Editing Commands
The normal editing keys allow you to move within the command line.    Use Home, End, 
left-arrow and right-arrow to move within the command line.    Ctrl+left-arrow move one 
word to the left, and Ctrl+right-arrow move one word to the right.    You can clear the 
command line by pressing Escape.

SmilerShell's command line can be in either insert mode or overtype mode.    Toggle this
with the Options menu item Overtype, or just type Alt+O.    In overtype mode, a flag 
appears in the title bar, above the second 'e' in 'SmilerShell.'.

Related Topics:
Using Arrows To Retrieve Previous Commands 
Submitting Commands 
The Options Menu 



Size Of Window
SmilerShell will accept commands of up to 128 characters (the DOS command line 
limit).    You can make the command line window as wide as you like.    However, there is
never any need to make it more than one line high!    If you try, it snaps back.

When maximized, SmilerShell takes up only the top line of your screen.    You can set up
a very useful configuration by setting SmilerShell as a topmost window, then maximizing
it.

For a smaller SmilerShell window, use the Options menu to toggle off the menu and title
bar, then mouse the window as small as you like.    You can make it as small as an icon, 
or even smaller.

Of course for the smallest window of all, click the Hide! item in SmilerShell's menu.    
The command line will vanish, and take up no screen space at all.    To get it back, left-
click the SmilerShell button that hops into the title bar of whichever application you've 
currently got activated.

Related Topics:
The Hide! Menu Item 



Getting Rid Of Inactive Windows
The Options menu item Inactives Stay Visible controls whether, after SmilerShell runs 
a DOS command, the command's inactive window sticks around or goes away.    Use 
the Options menu to set this to your preference.

If you've toggled Inactives Stay Visible to allow it, each DOS command ends by firing 
up its own "inactive" window.    That is, a window with "Finished..." or "[Inactive..." or 
"(Inactive..." in the title.    This is handy, letting you see the results of previous 
commands, but it does eventually clutter your screen.    To make them all go away, use 
the Remove Inactives item on the Edit menu, or simply type Alt+R.

To toggle Inactives Stay Visible for just one command, start the command line with an 
asterisk (*list foo.txt for example).    You can use this with the equals sign or right-
bracket flags if you want to (for example =*>dir).



About Internal DOS Commands
SmilerShell runs most DOS commands in a subshell.    For internal DOS commands that
affect the working environment, this is tricky.    The subshell starts up with a copy of the 
parent's environment, things like current directory, environment variables, settable DOS 
version, etc. If you alter an environment variable or change directory in a subshell, the 
parent shell's information does not change.    SmilerShell can support all the internal 
DOS (and 4DOS/NDOS) commands you're likely to want.    It supports CD/CHDIR and 
PATH itself (see below), and for the rest calls the system's command processor.    In 
addition, there are three "semi-supported" internal DOS commands: CHCP, SET, and 
VER.    In DOS, these can both set and show environment values.    If you enter one of 
these, SmilerShell will show their current value.    However, because you are in a 
subshell, not your actual environment, you can't change these values in your actual 
working area through SmilerShell (or through any Windows program, generally).

SmilerShell handles CD/CHDIR and PATH by itself.    For CD/CHDIR it changes the 
current directory on the specified drive, or its own current directory if no drive letter is 
given.    CD or CHDIR with no parameter shows the current directory, handy when the 
title bar is toggled off.

For PATH, the behavior depends on the command's parameters.    PATH by itself shows 
the current path in SmilerShell's edit window.    PATH=TEXT sets SmilerShell's copy of 
the path to theTEXT you specified.    PATH= (with nothing after the equals sign) sets 
SmilerShell's path to be the same as the current systemwide path.    For more 
information on this, see PATH: Change The Search Path.

If you use the 4DOS (or NDOS, same thing) command processor, you can use the 
Settings dialog to set up SmilerShell to correctly handle 4DOS/NDOS internal 
commands.    For more information on this, see Using 4DOS/NDOS Internal 
Commands.

To summarize:

Supported Internal DOS Commands: CD, CHDIR, COPY, DATE, DEL, DIR, ERASE, 
FOR, MD, MKDIR, PATH, REN, RENAME, RD, RMDIR, TIME, TYPE, VOL

"Semi-supported" Internal DOS Commands: CHCP, SET, VER

Unsupported Internal DOS Commands: CLS, CTTY, EXIT, PROMPT, VERIFY and the 
batch file commands.

Supported Internal 4DOS/NDOS Commands: ?, ALIAS, BEEP, CDD, DESCRIBE, DIRS,
ESET, FFIND, FREE, GLOBAL, HISTORY, LIST, LOADBTM, LOG, MEMORY, MOVE, 
POPD, PUSHD, REBOOT, SELECT, SETDOS, SWAPPING, TEE, TIMER, 
TRUENAME, UNALIAS, Y



Aliases 

An alias is a short command that is replaced with a longer command.    Some people 
call them macros.    There are two kinds of aliases in SmilerShell.    In the first kind of 
alias, you type a (typically, short) command line and press Enter, and the first word of 
the line is replaced with another (typically, long) string.    The rest of the original 
command line is tacked on after the replacement string.    You can define up to about 
100 of these type-in aliases.    In the second kind, you press a function key and a 
predefined command is submitted.    You can define one of these function-key aliases 
for each of F2 through F12 (F1 is reserved for Help).

Type-in Aliases: Let's look at the first kind.    Say you set up the alias:

dirprog=dir c:\develop\source\*.*

Whenever you enter the command "dirprog", SmilerShell will replace it with, and 
actually submit, the command "dir c:\develop\source\*.*" to be run.    This saves wear 
and tear on your typing fingers.

You can put parameters on this kind of alias.    In our example, you could enter

dirprog /o /p

and SmilerShell would run the command

dir c:\develop\source\*.* /o /p

by adding the original parameters after the substituted alias.

A typed alias is used just like any other command; type it in (with parameters if any) and
press Enter.    SmilerShell looks at the first word on each command line to see if it's an 
alias.

To avoid alias checking for a particular command, start it with an equals sign.    For 
example, if you actually had a program called "dirprog" that you wanted to run instead of
the alias defined above, you could submit this:

=dirprog

Because the command line starts with an equals sign, SmilerShell skips the alias 
testing for this command.      

You can use the equals sign flag with the right-bracket or asterisk flags if you want to.
In this example, you could type *>=dirprog and press Enter.

SmilerShell allows multiple commands on one line.    You can alias such multi-command



lines.    For example:

bigcmd =    cd \dos ^ *dir *.exe /w ^ dc fle ^ >=myprog param1 param2 param3

Notice the use of    equals, right-bracket, and asterisk flags on the multi-command 
line.    Since each command is separate, each can have its own flags.

Type-in aliases can have runtime parameters %0 through %9, similar to DOS batch file 
parameters.    %0 is the alias-part itself, and %1-9 are the first nine arguments.    Here's 
a simple example that changes a file’s extension from ASC to anything else:

newextn=ren %1.asc %1.%2

To change filename.asc to filename.txt you'd use it like this:

newextn    filename    txt

Runtime parameters really shine in multi-command aliases.    For example, to implement
your own "move" (copy and delete) command you could do this:

move=copy %1 %2 ^ del %1

Now, to move a file or group of files, you could give the command "move *.exe b:" and 
SmilerShell would copy the files, then delete the originals.

Any command line arguments that are not used up by % parameters are left at the end 
of the command line.    So "move *.exe b: fee foo" would turn into "copy *.exe b: ^ del 
*.exe fee foo".

How about an alias like "move=copy %1 %3 ^ del %1" that doesn't use an argument? If 
you wrote an alias to use %1 and %3 but never refer to %2, the first and third argument 
would be used in the command, and the second argument would be put at the end of 
the command line.

Function Key Aliases: The second kind of alias is where you attach a command to a 
function key.    Just press the function key and the command is submitted.    You don't 
need to press Enter to submit it.    Function keys F2 through F12 can be set up this way.

For example, let's say you have set up the alias:

(F5)=copy c:\develop\source\*.* b:\

Now, whenever you press F5 in SmilerShell, the command "copy c:\develop\source\*.* 
b:\" will be submitted.    It's very handy, no need to press Enter.

Function key aliases can be a multi-command line (see above) but they cannot have 



parameters.

In General: You can define or change aliases from the command line one at a time with 
the ALIAS and UNALIAS commands.    Or use the Aliases section of the Settings dialog 
to work with them all at once.    In the Settings dialog, list aliases one per line, in the 
form alias=replacement.    The left side of a function-key alias has the key name in 
parentheses, as in the example above.    The left side of a type-in aliases can be 
whatever you like, as long as the alias-part has no embedded spaces.    The 
replacement-part can be whatever you like.

By default, alias testing is case-sensitive.    You can change this in the Aliases section of
the Settings dialog.

Aliases can reference other aliases, but be careful to avoid self-referencing infinite loops
(alias 1 defined in terms of alias 2 which is defined in terms of alias 1 which is ...).

Related Topics:
The Settings Dialog 
ALIAS and UNALIAS: Create, Change, Remove Aliases 



DC: Directory Change The Fast Way  
DC (Directory Change) is a built-in alias that lets you change directory very quickly.    
Instead of having to type in the entire pathname, you only need to give it the first few 
letters of the endpoint (leaf-node) directory you want.

For example, instead of typing "cd \c8\mfc\samples\fileview" you could type "dc fi" and 
press Enter.    If "fi" is enough to unambiguously specify one directory, DC takes you 
right there.    If what you typed is ambiguous (maybe there's more than one directory 
whose name starts with "fi") a window pops up, showing all your possible matches in 
alphabetical order.    The first possible match is highlighted.    If there was no possible 
match, nothing is highlighted.    Double-click on your choice, or single-click and press 
OK.

At the top of the box is the number of directories DC knows about.    There's a button to 
re-scan the directory list as well.

To re-scan the list and change directory all at once, use the /r parameter.    For example 
"dc /r fi" would first re-scan, and only then look for that fi directory (in the new list) as 
described above.    You can use a dash ("-r" instead of "/r") if you prefer.

If the endpoint directory is on a different drive, DC will first change drives, then change 
to the desired directory.    There's no need for you to manually change drives first.    DC 
does it for you.

By default, the DC data is stored in the file "smishell.dir" in the same directory as the 
initialization file (you can specify another name and location for this file in the Settings 
dialog).    SmilerShell creates this file the first time you use DC (with your permission), or
whenever you use the File menu item Scan Directories.    It contains the name of every
directory on each drive that was scanned.    These are the directories that DC can 
change to.    To indicate what drives you want scanned, set Drives To Scan For DC 
Data in the Settings dialog.    For example, if this is in Settings:

Drives To Scan For DC Data      [cdm    ]

then SmilerShell will generate a list of all directories on your c, d, and m drives.    (The 
list of drives can be separated by commas or spaces [ c, d, m ], or bunched together as 
in the example above.)

If the directory layout of your system is constantly in flux, you may want to check the 
Settings box Startup DC Scan so SmilerShell rescans your DC information every time it
starts.

Maybe you have some other program called DC that you'd like to run?    Since 
SmilerShell's DC acts like an alias, you can bypass it by starting the command line with 
an equals sign.



Related Topics:
The Settings Dialog 
Keep Explorer In Sync With SmilerShell/95 Automatically



Command Stack Files 

If you have a set of commands you'd like to be able to load into SmilerShell, create a 
command stack file.    This is simply a plain-text file with one command per line.    By 
default, the command stack file name is "smishell.stk" and it is in the same directory as 
the ini file.    If this file exists, its commands are preloaded.

However, you can use any filename, location, or extension you like.    Give your 
preferred filaname in the Settings dialog.

Command stack files can also be loaded or saved at any time from the File menu.

A preloaded command-stack is read before the command history from the most recent 
SmilerShell session.    That is, the previous-session commands will look more "recent" in
the history list than command-stack commands.

Related Topics:
What Happens When You Start SmilerShell



The Initialization File
The Settings dialog, on the Options menu, displays the current values of most 
SmilerShell initialization parameters.    (All the other values are also readily available, 
shown as menu item checkmarks, button offset, etc).    SmilerShell initializes itself at 
startup by reading these parameters from an initialization file.

If you started SmilerShell without an initialization file, you'll be asked if you'd like to 
create one, filled with reasonable defaults, before proceeding.    When convenient you 
can change these values with the Settings dialog and menu toggles.

If you don't specify otherwise in the Settings dialog, SmilerShell looks for its DC 
information file and any startup command stack file in the same directory as the 
initialization file.

If you want, you can specify that SmilerShell's initialization file be named something 
other than "smishell.ini" or be somewhere other than the same directory as the 
SmilerShell program.    Here are two different ways to do this, depending on whether 
you are in Windows 3.1 or Windows 95.

In Windows 3.1:
Give that information on the 'SmilerShell icon's 'Properties' command line.    To do this, 
highlight the SmilerShell icon and bring up Program Manager's Properties dialog (it's 
under the File menu).    In the Command Line item, add a space after "smishell.exe", 
then the flag /ini= (lower case) and the drive and directory in which to find the ini file, 
with no embedded spaces, as in the following example:

        Command Line:    [c:\smishell\smishell.exe /ini=c:\dir1\subdir2\myfile.ini          ]

In Windows 95:
Open Explorer to the directory containing the SmilerShell/95 executable program file.    
Right-click on that file to bring up its context menu.    Choose the menu item “Create 
Shortcut.”    Windows 95 will create a shortcut to SmilerShell elsewhere in the same 
directory.    Right-click on that shortcut file entry to bring up its context menu, and in that 
menu choose the menu item “Properties.”    The shortcut’s Properties dialog will appear. 
In that dialog, click on the Shortcut tab.    You’ll see that the “target” has been set to the 
actual filename and directory of SmilerShell/95.    Add a space after "smishell.exe", then 
the flag /ini= (lower case) and the drive and directory in which to find the ini file, with no 
embedded spaces, as in the following example:

        Target:    [c:\smishl32\smishell.exe /ini=c:\dir1\subdir2\myfile.ini          ]
    
In either operating system, that’s it, you’re done.    Close the dialog and save your 
work.    In Windows 3.1 you use the new setup just like before: start SmilerShell by 
clicking on the same old icon.    But in Windows 95, to use the new setup you must start 
SmilerShell by clicking on the shortcut, not the original icon.    By the way, you can also 



modify an existing SmilerShell shortcut as described above (perhaps one already on 
your Start menu) instead of creating a new one.

Related Topics:
The Settings Dialog
Aliases 
Command Stack Files 
The Apps Menu 



Why Is This A Shell?
The word shell is sometimes used for a wrapper that surrounds other applications and 
hides them.    SmilerShell does that.    You can set up its Apps menu to run anything you 
want, quickly and easily, from anywhere.    No muss, no fuss.

But SmilerShell also does the opposite of that.    SmilerShell's commandline lets you 
"shell out," making all the power of the command line available from an environment in 
which that power is not otherwise accessible.

One word, two meanings.    Faster, easier, more powerful. That's what SmilerShell is, 
and that's why it's a shell.



Notices
VERSION: SmilerShell version 3.14159 or SmilerShell/95 version 1.1

SYSTEM REQUIREMENTS: The 16-bit version of SmilerShell requires Microsoft 
Windows 3.1.    The 32-bit version, SmilerShell/95, requires Windows 95 or Windows 
NT.

SOFTWARE LICENSE: Anyone is welcome to distribute unregistered evaluation copies 
of SmilerShell, in its entirety as distributed with this file, subject to these conditions:

1) None of the files in this package may be modified or deleted.
2) Vendors or distributors who generally pay royalties must notify the author that they 
are distributing SmilerShell.
3) Vendors or distributors must stop distributing SmilerShell if asked to do so by the 
author or author's representative.

In addition, the attached VENDINFO data record is hereby incorporated by reference.    
Any distribution satisfying all the distribution requirements expressed in that data record 
is hereby authorized.

After purchasing, copies of SmilerShell may not be distributed.    Only one user is 
authorized to use the program, on one computer.    It may not be used in a multi-user 
setting without first obtaining a site license.    It may be duplicated only for the purpose 
of making a reasonable number of backup copies.

DISCLAIMER: The author of this software package, Barry Smiler, has used his best 
efforts in producing this software and documentation.    These efforts include the 
research, development, and testing of the software, and production of the 
documentation.

WARRANTY: The author makes no warranty of any kind, expressed or implied, with 
regards to the software or the documentation.    The author shall not be liable in any 
event for incidental or consequential damages in connection with, or arising out of, the 
furnishing, performance, or use of this software package.

COPYRIGHT: All SmilerShell software and documentation copyright 1993,1995 Barry 
Smiler.

CONTACTING THE AUTHOR:    Barry Smiler, the author of SmilerShell, can be 
contacted through CompuServe email (72340,375), Internet email 
(72340.375@compuserve.com), U.S. mail (Bardon Data Systems, 1023 Key Route 
Blvd., Albany CA 94706), or phone (510-526-8470).



Uninstalling SmilerShell
SmilerShell tries to be considerate of the rest of your Windows system.    For the most 
part, it just copies its own files to the directory you specify, and adds its icons to the 
Program Manager group you specify.    If you decide to uninstall, just delete the 
specified files and icons.

There are at most two files in other locations.    1) SmilerShell generates smishell.pif in 
your Windows directory.    2) The Windows 3.1 version of SmilerShell installs Microsoft's 
ctl3dv2.dll to your Windows system directory if not already there.    Many programs use 
this Microsoft systemwide tool on Windows 3.1.    SmilerShell/95 does not require this, 
and does not install it.

If you have put the SmilerShell ini file in another directory, delete it.    If you have used 
SmilerShell's DC command, delete the DC info file.    By default it is named 
smishell.dir, and is in the same directory as SmilerShell's ini file.

Related Topics:
Installing SmilerShell 



Installing SmilerShell
SmilerShell includes the following files which are installed to the
directory you choose:

smishell.exe the program
smishell.hlp the documentation, in Windows help file format
readme.txt overview and installation instructions
sample.stk sample command stack file
whatsnew.txt new features and revision history
orderfrm.wri SmilerShell's order form / invoice
dealers.txt toll-free numbers and SmilerShell vendors worldwide

If installing the 16-bit version of SmilerShell, this file is put into the Windows system 
directory if not there already:

ctl3dv2.dll Microsoft-supplied system file to give SmilerShell a 3-D look

SmilerShell also comes with these files:

install.exe automated SmilerShell installer
file_id.diz formatted description file, for BBS uploads
vendinfo.diz formatted description file for software vendors
vendor.txt plain-text description file for software vendors

You can install SmilerShell automatically, using the enclosed auto-installer.    To do this, 
simply run install.exe from within Windows.    You can run it using Explorer, File 
Manager, the Run item on the Start menu or Program Manager's File menu, or in 
whatever other convenient way you choose.    Give it the directory to put SmilerShell's 
files into, and the Program Manager group name for the SmilerShell icons (appropriate 
defaults are suggested).    It'll do the rest.    The installer will make no changes to your 
system set-up or to any systemwide files.    It copies the SmilerShell files to the directory
you specify, and puts its icons in the Program Manager group you choose.    At most 
only two files are placed in other locations.    The SmilerShell/16 installer puts 
Microsoft's ctl3dv2.dll to your Windows system directory if not already there (many 
programs use this Microsoft systemwide tool), and the SmilerShell program generates 
smishell.pif in your Windows directory.

Optionally, you can set up an initialization file.    But if you start SmilerShell without an 
initialization file, you'll be asked if you'd like SmilerShell to create one and fill it with 
reasonable values.    You can view and change these values with the Settings dialog.

Optionally, give a non-default location for the initialization file.    Perhaps you're on a 
network, and want to install SmilerShell on a server, but let everyone have their own 
local setup.    See The Initialization File. 



Optionally, you can create a command stack file, having a list of commands that you 
want loaded into SmilerShell at startup.    See Command Stack Files. 

Related Topics:
Uninstalling SmilerShell 



Quick Start / Hints And Tricks
Windows is great, but sometimes it can be awkward.    Getting to the icon to launch an 
application isn't always easy.    Finding files is difficult at best.    There's no good way to 
keep an eye on important systemwide resources.    And even when you have all the 
pieces, sometimes it'd be faster to just type a command -- but how?

That's what SmilerShell is for.

SmilerShell is a compact yet powerful Windows control center that takes NO space on 
your desktop.    Until you need it, SmilerShell is just a tiny button that hops into the 
titlebar of whichever app you're working in.    Right-click the button to see your 
configurable Apps list and launch a new program, or switch to a currently-running task.   
Or left-click the button to reveal the ultimate Windows command line, which supports 
pipes, redirection, and internal DOS commands (and of course runs Windows programs
too).    SmilerShell has the best command line you've ever seen, as if the plain-vanilla 
DOS prompt was enhanced by lots of handy utilities.

Here's how to get the most out of SmilerShell.

INSTANT INSTALL:  You can install SmilerShell automatically, using the enclosed 
installer.    Simply run install.exe from Windows using Explorer, File Manager the Run 
item on the Start menu or Program Manager's File menu, or in whatever other 
convenient way you choose. Give it the directory to put SmilerShell's files into, and the 
Program Manager group name for the SmilerShell icons (defaults are suggested).    It'll 
do the rest.    The installer will make no changes to system or initialization files.    This 
makes uninstalling easy, if you decide to do so.

PRESS THE BUTTON: SmilerShell's activation button hops into the title bar of 
whichever application is currently active.    Right-click the button and the Apps menu 
appears, ready for you to launch one of your listed apps or switch to a currently-running 
program.    Or left-click the button to reveal the command line window.    Then later, hit 
the SmilerShell menubar's "Hide!" item and the commandline window vanishes again.

BUTTON EXCEPTIONS: Have a non-standard Windows application with an unusual 
titlebar setup?    Use the Button Exceptions menu item to tell SmilerShell where in that 
window you'd prefer the button to go.

BUTTON OFFSET: If you have another utility that uses every active app's titlebar, tell 
SmilerShell how to move its button out of the way by setting up a Button Offset. 

FAVORITE APPLICATIONS:    List your favorite applications on the Apps menu.    Then 
just click on one to either select its name into the command line, or run it straight off 
(you can set it up either way).    The Apps menu also lists all currently-running programs.
Click on one to switch to it.



BUILD YOUR OWN COMMANDS: You can list all sorts of things on the Apps menu.    
All Windows or DOS commands and programs, of course.    But also SmilerShell 
aliases, multiple commands on one line, DOS internal commands, pipes and 
redirection.    Your commands can have parameters, too.    Want to have a special 
command to start your spreadsheet program, pre-loaded with specific data, from 
anywhere in your system, with one click?    Here's how to do it!

COMMAND HISTORY AND SEARCH: Every time you run a command from the 
commandline, it is saved.    To find a previous command of interest, type the first letter or
two of that command, then press the up-arrow (search back) or down-arrow (search 
forward) key.    The last command is connected to the first, so you can search in either 
direction.    Arrows on a blank line show all commands in order. If you've checked Save 
State in the Settings dialog, all the commands you gave this time will be in the 
command history when you start next time, handy for searching.    To see the full 
command history list, click the Command History button, or type HISTORY on the 
commandline.    The full history list is also available from the File menu. 

COMMAND LINE EDITOR: A retrieved previous command, or anything else you type, 
can be edited to suit.    Think of SmilerShell as a one-line word processor.    It supports 
insert mode, overtype mode, and clipboard cut/paste.

ALIASES: When you press Enter, the first word of the command is compared to the 
alias list.    If it matches, the alias is substituted for that first word. You can skip the alias 
testing by starting the command with an equals sign.    You can also hang aliases off the
function keys F2 through F12; hit the key and the command runs.    Both kinds of aliases
are set up in the Options menu's Settings dialog, or from the commandline with the 
ALIAS and UNALIAS commands.    A full alias list is also available on the File menu.

RUNTIME PARAMETERS IN ALIASES: Runtime parameters (%1, %2, etc.) make it 
easier to tell aliases what to do when you run them.    And if you alias multiple 
commands on one line, the alias acts almost like a batch file, all within SmilerShell!

PERSONALIZE YOUR SHELL: You can set the command line's font and colors any 
way you like.

HELP: Of course there's full Windows Help.    But in addition, you can use the Popup 
Hints (Alt+F1) to get tips on interesting ways to use SmilerShell. Popup Hints are 
especially handy for new users.

ALTERNATE COMMAND PROCESSORS: Do you use 4DOS or NDOS?    Tell 
SmilerShell to recognize 4DOS/NDOS commands, and set SmilerShell to use the 
4DOS/NDOS command processor instead of plain old COMMAND.COM.    It's in the 
Settings dialog. 

GET SMALL: SmilerShell has a very small window, but you can make it even smaller.    
Use the Options menu to get rid of the menu and title bar.    Or type Alt+M to toggle the 



menu, Alt+L to toggle the title bar.    Then mouse SmilerShell as small as you like.    It'll 
go smaller than an icon!

QUICK DIRECTORY CHANGE: Type DC and the first few letters of the directory you 
want to be in.    If it's unambiguous, boom, you're there, otherwise a list box pops up with
the first possible match highlighted.    If you haven't used DC yet, you'll be asked for 
permission to scan the drives listed in the Options menu's Settings dialog.    If you scan 
more than one drive, DC can change drive as well as directory to get you where you 
want to go.

SYNC WITH EXPLORER: Automatically change Explorer's current directory whenever 
you change SmilerShell/95's directory with CD or DC.    This is especially handy when 
using DC.      With just a few keystrokes you can instantly navigate through your system, 
even across drives.    Toggle this switch and Explorer tags along behind.    No more 
clicking through directory trees!    You won't believe how convenient this is.

SMILERSHELL NEVER FORGETS:    Check a box in the Settings dialog and 
SmilerShell will start up next time in the same directory, same screen position, and with 
the same settings, as when you shut it down this time.

DOS IN A WINDOW: Do you prefer to have DOS commands run fullscreen or in a 
window?    Toggle this on the fly with the DOS In Window menu item.    Or to run one 
command as if DOS In Window is set to the opposite of its current value, start that 
command with a right-bracket (for example >dir).

INACTIVES STAY VISIBLE:    After you run a DOS command, do you want the 
command's inactive window to stick around, or immediately vanish?    Toggle this flag, 
called Inactives Stay Visible, from the Options menu.    Or to run one command as if 
Inactives Stay Visible is set to the opposite of its current value, start that command with 
an asterisk (for example *dir).

REMOVE INACTIVES: Too many inactive windows cluttering your screen?    Get rid of 
'em with this Edit menu item, or just type Alt+R from the keyboard.

DATE AND TIME:    Toggle the titlebar date/time clock from the Options menu, or just 
type Alt+C.    Prefer 12-hour or 24-hour time?    Various date formats? Set it the way you 
like it with the Options menu's Settings dialog.

ALARM CLOCK AND REMINDER:    Use the built-in ALARM command to set the alarm
clock.    You can even give it a message to display when the alarm goes off.

WORK WITH FILES: The built-in command SHOW is often a useful alternative to DIR, 
since SHOW's file list lets you click on a filename to select it into the command line.

COMMAND COMPLETION: Type the first few letters of a command name, with 
wildcard characters (* and ?) if you like.    Then hit the Tab key. SmilerShell will search 



your PATH for any commands that match.    It'll even find matching files with runnable 
File Association extensions.

FIND FILES: Use the FindFile dialog to search for files by name or contents, anywhere 
in your system. It accepts wildcards and can look for files containing specific data.    
When you find the file you want, you can go to its directory or fetch its full name into the 
commandline.    You can get to this dialog from the Find File item on the File menu, or by
typing in the built-in FIND command 

LONG FILE NAMES: SmilerShell/95 for Win95 and NT lets you work with long 
filenames with embedded spaces.    To use one, enclose the long filename in double-
quotes so it'll be seen as a single item (example: "long file name.exe" param1 param2 
param3)

FILE ASSOCIATIONS: With File Associations simply type in the filename without the 
program name, and quite often SmilerShell will know which program to run.    For 
example give "FILENAME.WRI" and SmilerShell knows to run Windows Write on this 
file.    This works very nicely with SHOW or FIND: use SHOW or FIND to pick a file, then
press Enter to automatically run the proper program with that file.

DRAG AND DROP:  SmilerShell supports drag and drop, so you can drop files onto its 
window from File Manager, Explorer, or any other drag-and-drop server. The filenames 
will be added at the end of the current command line.

CURRENT DRIVE/DIRECTORY IN THE TITLE BAR:    It's handy to always know what 
directory you're in.    Toggle this from the Options menu, or just type Alt+D.

SYSTEM RESOURCES:    Toggle the System Resources display onto the menu bar 
from the Options menu, or just type Alt+S, to see a real-time running report of your 
available Windows memory and resources.    If you toggle off the menu, the resources 
report will appear in the command line.    Don't worry, nothing you type will be 
overwritten by the resources report!    Just type, your text will reappear exactly as you 
left it.

INSERT OR OVERTYPE MODE: Toggle insert or overtype mode from the Options 
menu, or just type Alt+O.    In overtype mode a flag appears in the title bar.

TOPMOST WINDOW: Make SmilerShell a "topmost" window from the Options menu, or
just type Alt+T.    That way, it's always visible and ready for use, even when you're 
working in another window.

GET RID OF THE MENU:    Hit Alt+M to make SmilerShell even smaller.    Hit Alt+M 
again to bring the menu back, or use the Show SmilerShell Menu item on the System 
menu (the dash thing in the upper left corner).

SAVE YOUR STACK: You can save the current command stack to a file and reload it 



automatically at startup, or at any other time.    This gives you a preloaded batch of 
commands you can search on.    The startup loading is set up in the Settings dialog. 



DOS Commands: Fullscreen Or Windowed
The Options menu item DOS In Window (Alt+W) controls whether active DOS 
commands called from SmilerShell run fullscreen or in a window.

To toggle DOS In Window for just one command, start the command line with a right-
bracket (example: >dir \dos). You can use this with the equals or asterisk flags if you 
want to (for example =*>dir).

Related Topics:
Submitting Commands 
The Options Menu 



The Hide! Menu Item
If you have not disabled the titlebar-button feature, there is a Hide! menu item, which 
hides the command line window.    Alt+H works too, handy if the menu has been toggled 
away.

The exclamation point is a standard Windows flag.    It means that there is no actual 
menu associated with this item, and clicking it will cause immediate action.

Related Topics:
The Settings Dialog 
Submitting Commands 



SHOW: An Alternative To DIR
The built-in alias SHOW is sometimes more useful than DIR.    Like DIR, you could 
issue, say, the command SHOW *.WRI to display all Windows Write files in a list.    But 
unlike DIR, SHOW lets you choose one of the files from its list.    Click on a filename, 
then press the OK button, or just double-click on the filename.    Either way, the filename
you choose is placed on SmilerShell's command line, where it becomes the current in-
process command.    You can add parameters or edit the command before submitting it.

SHOW works nicely with File Associations.    Because SmilerShell supports File 
Associations, quite often you only have to give the filename, without naming the 
program to run it.    SmilerShell can often tell what program to run, just    by looking at 
the filename.      So, for example, you could use SHOW to select "FILENAME.WRI" into 
the command line, then just press Enter.    SmilerShell knows to run Windows Write on 
this file.

Maybe you have some other program called SHOW that you'd like to run?    Since 
SmilerShell's SHOW acts like an alias, you can bypass it by starting the command line 
with an equals sign.

Another option might be to use SmilerShell's FIND command, which also generates a 
list of files and lets you pick one.    The command list generated by SmilerShell’s 
“command completion” feature might also be helpful.



Keyboard Shortcuts
These SmilerShell commands work immediately, without going through a menu.

Alt+C Date/time clock in titlebar
Alt+S System Resources report in menubar
Alt+D Current directory in titlebar
Alt+O Overtype/insert mode
Alt+T Topmost window
Alt+L Show/hide titlebar
Alt+M Show/hide menubar
Alt+I Inactive windows stay visible
Alt+W DOS commands windowed/fullscreen
Alt+F1 Popup Hints
Tab Command Completion: find all matching commands

You can display any menu, or use any menu item, from the keyboard.    To display a 
menu press its Alt key combination.    When in a menu, press any item's underlined key 
to run that item.

Alt+F File menu
Alt+E Edit menu
Alt+N Options menu
Alt+A Favorite Apps menu
Alt+H Hide the commandline window
Alt+P Help menu

These standard Windows commands are available in SmilerShell.

F1 Help
ALT+F4 Exit
Alt+Bksp Undo last action
Ctrl+Z Undo last action
Shift+Del Cut selected text, send to the Clipboard
Ctrl+X Cut selected text, send to the Clipboard
Ctrl+Ins Copy selected text, send to the Clipboard
Ctrl+C Copy selected text, send to the Clipboard
Shift+Ins Paste contents of Clipboard into commandline
Ctrl+V Paste contents of Clipboard into commandline
Del Clear selected text
Esc Clear entire commandline 



The Apps Menu
The Apps menu is displayed either when you right-click on the roving titlebar button, or 
when you select Apps from SmilerShell's own menu bar.

The Apps menu is divided into three parts, divided by separator lines.    The first part 
lists five SmilerShell commands.    The second part lists all the "favorite applications" 
you've set up.    The third part lists all currently-running tasks.    Icons are displayed with 
menu items when they are available.

The three parts all work the same way.    Use your mouse or keyboard to select a line, 
and that function is executed.    It either runs a SmilerShell internal function, or starts the
"favorite application," or switches to the chosen currently-running task. 

The five SmilerShell commands at the top of the Apps list are Edit Apps List, Find File,
Command Line, SmilerShell Settings, and Help.      Just as you'd expect, Help 
displays the SmilerShell Help information.    Command Line reveals the command line.  
It's just like left-clicking on the button. but can save you a step in some cases.    
SmilerShell Settings brings up the Settings dialog with which you configure 
SmilerShell.    Find File brings up SmilerShell's Find File dialog so you can search for a 
file.    It also displays the command line if it was previously hidden, making it easier to 
use the results of your file search.

Finally, Edit Apps List lets you modify your "favorite applications" list.    You can use 
Edit Apps List to list up to 199 "favorite applications."

To add a new    "favorite application," give information for it and click the Add App 
button.    Give the text for the Apps menu item, and the filename of the program to run.    
Choose whether, when its menu item is clicked, this command should be fetched into 
the SmilerShell window for editing (perhaps to add parameters), or run immediately.      
Then click on Add App.    Your new item will be added after the currently-selected 
command, or at the end of the list if no command is currently selected.

You can "drag and drop" a program from File Manager or Explorer onto the Apps dialog. 
The name will appear in the "Command to run or fetch" area.

To edit an existing item, select it from the list.    The command’s information appears in 
the editing area.    Click the Delete App button to delete it, or edit the information and 
press Change App to change it.

Programs listed here can use parameters, aliases, commandline flags (*>=), multiple 
commands on one line, pipes, redirection, or any other valid options.    Anything that 
works from the SmilerShell command line will work here.

Can't remember a program's filename?    Click the Browse button to display a dialog 
box with which you can navigate through your system and find the program name to be 



used on the command line.    In that box, click on a filename to select it into the 
Command to run or fetch line.

Or press Find All Apps to search every hard disk or attached network drive (not floppy 
drives, CDs, Bernoulli boxes, etc.) and create a list of every program on your system.    
You can then browse this list and select programs to add onto the Apps menu.

Related Topics:
The Options Menu 
The FindFile Dialog 



The 'How To Order' Menu Item
Until you order, SmilerShell 's menu bar includes a How To Order menu item, which 
provides information on how to order.    Of course, after you purchase SmilerShell, this 
menu item is superfluous, and goes away.

Related Topics:
How To Order SmilerShell 



The FindFile Dialog
Can't find a file?    Use SmilerShell's built-in FindFile dialog to search by name or 
contents.

There are two ways to bring up the FindFile dialog.    The fastest way is to type the FIND
command on the command line, optionally with the target filespec (wildcards are OK) 
and contents to search for.    But to do it this way, you of course must first clear the 
command line and type the FIND command.    What if you don't want to delete what's on
the line?    In that case you could bring up the FindFile dialog from the File menu.    This 
is useful if your goal is to find a filename and add its name to a command you are in the 
process of building.

Here are examples of the three ways you might do it from the commandline:

find
find *.txt
find *.txt The quick brown fox

The first way just brings up the FindFile dialog, with the cursor in its Filename box ready
for you to type in a filespec.

In the second way, you have already given a filespec on the command line.    It is put 
into the Filename box for you, and the focus is placed on the Begin Search button.    
Just hit Enter and off it goes.

The third way is much like the second, but any text after the filespec is placed into the 
Containing box.    Only files that match the filespec and contain your text will be shown 
in the results list.    The matching text can be case-sensitive or not, as you choose. Use 
FindFile's checkbox to indicate your preference.

To use a long filename with embedded blank spaces as the filespec, enclose it in 
double-quotes:

find "a long file name*.exe" The quick brown fox

If the long file name doesn't have embedded spaces, you don't need the quotes.

Of course, after the dialog box appears, you can change the imported commandline text
before starting the search.

The target filename can use the usual wildcard characters ? (match one character) and 
* (match any number of characters).    If nothing is given, *.* is assumed.    The 
Containing text can be anything you want.    There are a number of radio buttons to 
specify where you want to search.    You can restrict the search to the current directory, 
current directory and all its subdirectories, or all drives whose letters you type in the 



dialog's drive-list box.

All matching files are listed, with name, size, date, time and attributes.    Double-click on 
a line to change to that directory, or use the buttons to fetch a name into the command 
line.    It will be added at the end of any text already on the line.

Related Topics:
FIND: Search For Files On Disk 



ALIAS and UNALIAS: Create, Change, Remove Aliases
The ALIAS and UNALIAS commands can create, change, or remove type-in or function-
key aliases from the command line, one at a time.    To work with all your aliases at 
once, use the Settings dialog where they are all listed together.    To learn what aliases 
can do, and how to construct them, see the Aliases section.

You can use these forms of the ALIAS and UNALIAS commands from the commandline:

ALIAS (alone) -- shows the same Aliases dialog available from the File menu.    It lists 
both your command-line aliases and your function-key aliases.    You can run an aliased 
command from this dialog box by clicking on it, or fetch the replacement-part into the 
main window for editing.

To add, change, or delete an alias, use one of the forms shown below.    If it's a function-
key alias, the alias-part is the letter F plus the key number, all in parentheses, as in the 
examples below.

To add an alias to the list, or change an existing alias, use this form:
ALIAS theAlias=replacement text to run when you enter the Alias
ALIAS (F12)=replacement to run when you press the key

To see what a particular alias will be replaced with, give an alias with no equals sign.
ALIAS anAlias
ALIAS (F5)

To delete an alias, use an equals sign but no replacement:
ALIAS anAlias=
ALIAS (F2)=

Or you can delete an alias with the UNALIAS command:
UNALIAS anAlias
UNALIAS (F11)

In all these cases, you'll be asked if you want the changed alias information to be 
effective for only the current session, or saved permanently to the ini file (if any).

Related Topics:
The Settings Dialog 
Aliases 



FIND: Search For Files On Disk
The FIND command is one of the three ways to bring up SmilerShell's built-in FindFile 
dialog.    To use it, type the FIND command on the command line, optionally with the 
target filespec (wildcards are OK) and contents to search for.    Here are examples of the
three ways you might do it from the commandline:

find
find *.txt
find *.txt The quick brown fox

The first way just brings up the FindFile dialog, with the cursor in its Filename box 
ready for you to type in a filespec.    In the second way, you have already given a 
filespec on the command line.    It is put into the Filename box for you, and the focus is 
placed on the Begin Search button.    Just hit Enter and off it goes.    The third way is 
much like the second, but any text after the filespec is placed into the Containing box.   
Only files that match the filespec and contain your text will be shown in the results list.    
The matching text can be case-sensitive or not, as you choose. Use FindFile's 
checkbox to indicate your preference.

To use a long filename with embedded blank spaces as the filespec, enclose it in 
double-quotes:

find "a long file name*.exe" The quick brown fox

If the long file name doesn't have embedded spaces, you don't need the quotes.

Of course, after the dialog box appears, you can change the imported commandline text
before starting the search.

The target filename can use the usual wildcard characters ? (match one character) and 
* (match any number of characters).    If nothing is given, *.* is assumed.    The 
Containing text can be anything you want.

You can also bring up the FindFile dialog with the Find File item on the File menu, or the
Find File item on the Apps menu (from the titlebar button or the SmilerShell main menu).
.

Related Topics:
The FindFile Dialog 



HISTORY: Display Command History
Type the command HISTORY to display the command-history list.    This is the same list 
that comes up if you click on the Command History Button, or select the Command 
History menu item on the File menu.    It shows all commands issued during this 
session, plus (if you've checked Save State in the Settings dialog) all the commands 
you issued during the last session.    It also displays any command-stack commands 
you read at startup or from the File menu.

The dialog box that appears has buttons to fetch the text of a command into the edit 
area, or to submit it to be run again as is.    Double-clicking on a command also sends it 
to be re-run.



PATH: Change The Search Path
The PATH environment variable is a systemwide value listing the directories to search 
for a program you want to run.    Unlike DOS applications, Windows programs cannot 
usually change the PATH environment variable.    However, SmilerShell provides you 
with some measure of ability to do this.

At startup, SmilerShell reads the systemwide search path.    You can then use the 
SmilerShell PATH command to change the list of directories listed there.    SmilerShell 
will then search your designated PATH for the programs you ask it to run, instead of the 
systemwide one.

There are three ways to use SmilerShell's PATH command:

PATH by itself shows the current path in SmilerShell's edit window.

PATH=something sets SmilerShell's copy of the path to the "something" you specified.

PATH= (with nothing after the equals sign) sets SmilerShell's path to be the same as the
current systemwide path.

So, an easy way to edit your path is to do a PATH (no parameters) to get the current 
path into the edit window, then edit it, then just hit Enter to submit the modified path.    
You can go back to the systemwide path at any time, by doing a PATH=.

You can change SmilerShell's PATH, but not the PATH of any programs called from 
SmilerShell.    These will still have only the original systemwide PATH.

Related Topics:
Submitting Commands 
About Internal DOS Commands 



Built-In SmilerShell Commands
These enhanced commands are built into SmilerShell:

ALARM: Alarm Clock With Reminder Message 
ALIAS and UNALIAS: Create, Change, Remove Aliases 
DC: Directory Change The Fast Way  
FIND: Search For Files On Disk 
HISTORY: Display Command History 
PATH: Change The Search Path 
SHOW: An Alternative To DIR 
Using 4DOS/NDOS Internal Commands 



Using 4DOS/NDOS Internal Commands
If you use the 4DOS or NDOS command processor, you can use the Settings dialog to 
set up SmilerShell to correctly handle all the 4DOS/NDOS internal commands that 
might be useful from a Windows command line.    The supported 4DOS commands are 
shown below.

In some cases, a 4DOS command is the same as a SmilerShell command (alias, 
history, unalias).    For these, start the command with an equals sign to pass it to the 
command processor unchanged (for example, =history), as if it were a SmilerShell alias.
In other cases, the 4DOS command has only marginal use under Windows.    Any 
command, however, that just might possibly be useful has been made legitimate under 
SmilerShell.

To add a command not on this list, set up a SmilerShell alias that tells the command 
processor to run your command.    For example, if you want SmilerShell to send the 
command DELAY to the NDOS.COM command processor, set up this alias:

delay = ndos.com /c delay

The /c switch tells the command processor to run this one command.    Similarly, if you 
only want to use some of the 4DOS/NDOS commands, turn off SmilerShell's internal 
support in the Settings dialog, and set up your own "/c" aliases for the commands you 
want to use. 

Supported Internal 4DOS/NDOS Commands: ?, ALIAS, BEEP, CDD, DESCRIBE, DIRS,
ESET, FFIND, FREE, GLOBAL, HISTORY, LIST, LOADBTM, LOG, MEMORY, MOVE, 
POPD, PUSHD, REBOOT, SELECT, SETDOS, SWAPPING, TEE, TIMER, 
TRUENAME, UNALIAS, Y



The Settings Dialog: Set Preferences
The Settings dialog allows you to customize SmilerShell in a number of ways.    You 
can alter its behavior at startup and exit, how it processes commands, its clock formats, 
aliases, data files, button exceptions, and other options.    Let's take it section by 
section.

Startup:    By default, at startup SmilerShell puts its titlebar button into the currently-
active application and hides its command line.    If you'd rather not have a roving titlebar 
button, un-check the Show Button box.    This will also eliminate SmilerShell's Hide! 
menu item. After all, if there's no button and you Hide! SmilerShell, how would you get it
back?    For the same reason, if you un-check Show Button you must also un-check 
Hide SmilerShell.

Select Startup DC Scan if you want SmilerShell to re-scan your Drives To Scan For 
DC Data (see below) whenever you launch it.    This is handy if your system's directory 
configuration changes a lot.    It keeps DC current with your system.

Exit:      Check Confirm if you want a dialog to pop up to confirm that you really do want 
to exit SmilerShell.    Check Save State to have SmilerShell remember from session to 
session its current directory, current switch settings, the command history for all 
commands you gave in the current session, and other information.

Command Processing:      Do you want SmilerShell to send 4DOS/NDOS internal 
commands to your command processor?

Time And Date Formats:    These are used by the clock in SmilerShell's titlebar.    
Choose your preferred format.

Miscellaneous:      Three otherwise-unrelated options.    Restore Time tells SmilerShell 
how many milliseconds to pause before trying to regain the focus from an inactive 
window.    Windows needs a little pause here.    How little can your system get away 
with?    Default is one second (1000 milliseconds).    Multi-Command Separator lets 
you select the character that divides multiple commands on one line.    Drives To Scan 
For DC Data is a list of drive letters, separated by spaces, commas, or nothing, as you 
prefer.    These drives will be scanned, and the names of all their directories saved, 
whenever you do a DC scan.    These will be the directories you can change to with DC.

Files:      The DC Data File is where SmilerShell stores the results of doing a DC scan.   
By default it is called smishell.dir and is in the same directory as the SmilerShell ini file.
If the Startup Commands File exists at startup, its commands are preloaded into 
SmilerShell's command history list, available to be searched for.    By default this is 
called smishell.stk and is in the same directory as the SmilerShell ini file.    If the 
filenames listed here are left blank, the default names are used.    If you list a name with 
no path, the files are assumed to be in the same directory as the SmilerShell ini file.    
Both of these files have a Browse button, allowing you to navigate through your system 



to find the files you need. 

Button Exceptions (List):    These are apps that you designated with the Button 
Exceptions menu item.    You can change one by simply using the Button Exceptions 
menu item on the same app again, but if you need to delete an exception entirely, you'd 
do it here.    This is just a list, it can't be edited.

Aliases (Can Be Edited):      These are all your aliases, one per line.    You can edit or 
delete an existing alias,    or add new ones.    (You can also do this from the command 
line with the ALIAS and UNALIAS commands.)    Do you want your aliases to be case-
sensitive?    Here's where you indicate it.

Related Topics:
The Initialization File 



Choosing Fonts And Colors
SmilerShell lets you choose the command line's font, foreground (text) color and 
background color.    These can be chosen from the Options menu.

Foreground Color brings up the standard Windows color dialog.    You can set the color
of the edit control's text.    Pick a standard color, or create a custom color, but note that if
you pick a dithered color, Windows uses the nearest solid color instead.

Background Color also brings up the standard Windows color dialog, allowing you to 
set the edit control's background color.    Pick a standard color, or create a custom color.

You can get a very interesting effect by choosing a dithered background color.    As with 
Foreground Color, if you pick a dithered color, Windows uses the nearest solid color 
behind actual text characters.    But it uses your chosen dithered color in the rest of the 
edit area.    This creates an unusual raised effect as you type.    Try it!

Font brings up the standard Windows font dialog.    You can set the command line font 
to any available style and size.    However, because of Windows limitations, italic fonts 
don't look as good as bold or normal fonts.



Using SmilerShell On A Network
SmilerShell will run well in a networked environment.    The software can be installed on 
a server, and every user can have an individual initialization file on their local machines. 
To set this up, use Program Manager's Properties dialog to give each user a SmilerShell
icon that calls the executable program on the server, with a parameter on the Properties
command line that uses the /ini= parameter to point to an initialization file on user's own 
machine.    For example, if the server is drive M: the icon's Properties command line 
might look like this:

Description: [Fred's SmilerShell
Command Line: [M:\programs\smishell.exe /ini=c:\smishell.ini
Working Directory:[c:\smishell
Shortcut Key: [None

The working directory won't make a lot of difference, since SmilerShell is usually 
configured to start up in the same directory it was in last time it was run.

Of course each network user must have a separate license to use SmilerShell.

Another way to use SmilerShell on a network is to use its ONECMD option to perform 
synchronous network connect/task/disconnect sequences.    See The ONECMD Option 
for more information on this.

Related Topics:
The Initialization File 



Command History Button: Lists All Commands
Click on the Command History Button, at the right side of the SmilerShell window, to 
display the command-history list.    This is the same list that comes up if you type the 
command HISTORY, or select the Command History menu item on the File menu.    It 
shows all commands issued during this session, plus (if you've set this up) all the 
commands you issued during the last session and any command-stack file you read at 
startup or from the File menu.

The dialog box that appears has buttons to fetch the text of a command into the edit 
area, or to submit it to be run again as is.    Double-clicking on a command also sends it 
to be re-run.



The ONECMD Option: Set Up Custom Desktop Icons 
To Do Any Task
Have you ever wanted to set up icons to run collections of commands under Windows?  
Sort of like a batch file, but in Windows, with any assortment of DOS or Windows 
commands?    And to make things interesting, would you like those commands to run 
synchronously -- the next one doesn't start until the previous one completes?

SmilerShell makes it easy to set up a second (or third, or fourth) SmilerShell icon with a 
batch of commands that will run whenever you click on it.    And don't worry, you can 
have your regular copy of SmilerShell running at the same time with no side effects.

You might use this on a network to set up synchronous connect/command/disconnect 
tasks, each on their own icon.    The connect can use a network drive letter,    the 
command can be a multi-command SmilerShell alias, and the disconnect can free the 
drive letter again.    Because it's SmilerShell, you are guaranteed that the tasks will be 
done in order -- the next one won't start until the previous one completes.    That's just 
one example of the power of this option.

Here's how to do it.

In Windows 3.1:
First, make a second copy of SmilerShell's Program Manager icon.    Perhaps the 
easiest way to do this is to pick up the icon with the mouse (click and hold) while 
pressing down the Control key, then "drag and drop" this second copy of the icon.    You 
can drop the copy back into the same Program Manager group, or into another group.

Next, highlight the second copy of the icon and bring up Program Manager's Properties
dialog.    It's on the File menu.    Use the /ini= commandline option to give this new icon 
a different ini file.    Let's call it c:\onecmd.ini in this example.    You'd set it up like this:

Description: [OneCommand Sample SmilerShell Setup
Command Line: [c:\smishell\smishell.exe    /ini=c:\onecmd.ini
Working Directory:[c:\smishell
Shortcut Key: [None

Exit from any other copy of SmilerShell currently running, and start SmilerShell from the 
new icon.    It will (with your permission) create the new ini file.    In this copy of 
SmilerShell, set up the assortment of commands as a "multiple commands on one line" 
SmilerShell alias.    Let's call the new alias mybatch.    Then exit from SmilerShell.

Bring up the Properties dialog again, and add the /onecmd= flag to the commandline, 
so it looks like this:

Description: [OneCommand Sample SmilerShell Setup



Command Line: [c:\smishell\smishell.exe    /ini=c:\onecmd.ini    
/onecmd=mybatch
Working Directory:[c:\smishell
Shortcut Key: [None

That's it, you're finished.    Whenever you click on the new icon your mybatch 
commands will be run.

In Windows 95:
First, make a Shortcut to SmilerShell/95.    Open Explorer to the directory containing the 
SmilerShell/95 executable program file.    Right-click on that file to bring up its context 
menu.    Choose the menu item “Create Shortcut.”    Windows 95 will create a shortcut to
SmilerShell elsewhere in the same directory.    Right-click on that shortcut file entry to 
bring up its context menu, and in that menu choose the menu item “Properties.”    The 
shortcut’s Properties dialog will appear.    In that dialog, click on the Shortcut tab.    You’ll 
see that the “target” has been set to the actual filename and directory of SmilerShell/95. 
Use the /ini= commandline option to give this new icon a different ini file.    Let's call it 
c:\onecmd.ini in this example.    You'd set it up like this:

        Target:    [c:\smishl32\smishell.exe /ini=c:\onecmd.ini          ]
    
Exit from any other copy of SmilerShell currently running, and start SmilerShell from the 
new Shortcut.    It will (with your permission) create the new ini file.    In this copy of 
SmilerShell, set up the assortment of commands as a "multiple commands on one line" 
SmilerShell alias.    Let's call the new alias mybatch.    Then exit from SmilerShell.

Bring up the Shortcut's context menu again, and again choose "Properties," and again 
in the dialog click on the Shortcut tab.    Add the /onecmd= flag to the commandline, so 
it looks like this:

      Target:    [c:\smishell\smishell.exe    /ini=c:\onecmd.ini    /onecmd=mybatch

That's it.    Now whenever you launch that icon, SmilerShell will run all the mybatch 
commands, then immediately exit.

You can, by the way, set it up to run any legal SmilerShell command, not just aliases.



ALARM: Alarm Clock With Reminder Message
SmilerShell's clock includes a companion alarm and reminder system.    You can set the 
alarm for any time in the next 24 hours, and to display any message when it goes off.    
To set the alarm enter the command alarm    followed by the time you want it to go off, 
followed by the message it should display.    You can use 12-hour time (12:00 through 
11:59 with am or pm), or 24-hour time (00:00 through 23:59).    If you like, you can put 
an equals-sign between the word alarm and the time.    Here are some examples of 
setting the alarm:

alarm=3:25 pm Call Bill before he leaves
alarm 11:30 lunch with Peter, Wendy, and the boys
alarm 23:30 ring Fred and Barney in California
alarm    =    1:30 pm

Remember that 12:00 by itself (without am or pm) is noon!    To specify midnight, use 
12:00 am.    Or use 0:00 to specify midnight using 24-hour time.

When the alarm is set, an exclamation point will appear in SmilerShell's titlebar.    To turn
off the alarm, enter the command alarm= (an equals sign with nothing after it).    To see 
what the alarm is set to, enter the command alarm all by itself.

Since the alarm is part of SmilerShell's titlebar clock, if you turn off the titlebar clock you 
will turn off any pending alarm too.      Toggling off the titlebar itself (and with it the titlebar
clock) will also deactivate the alarm.    And alarms are not saved from session to 
session.    But minimizing or hiding SmilerShell's commandline will not bother the alarm. 
As long as SmilerShell (and its clock) is running, the alarm will go off on schedule.

Maybe you have some other program called ALARM that you'd like to run?    Since 
SmilerShell's ALARM acts like an alias, you can bypass it by starting the command line 
with an equals sign.



Command Completion
Maybe you can't remember exactly what that command's called.    Or maybe you'd just 
rather have SmilerShell type it for you.    

Type a few letters of a command name, then hit the Tab key.    SmilerShell will search 
your current directory and your PATH for any commands that match.    It'll even find 
matching files with runnable File Association extensions.

For example, if you type ar and press Tab, SmilerShell looks for any runnable program 
files starting with "ar" that have the file extensions com, exe, bat, pif, and (in Windows 
95) lnk.    It also looks for any "ar" files whose file extensions are registered as a File 
Association, since these files can be submitted "as is" and will run the associated 
program.

You can use wildcard characters.    For example, you could type a?r  or *a?r and hit 
Tab.

If one match is found, that filename is place on the SmilerShell commandline.    If more 
than one match is found, all the matches are displayed in a list.    You can fetch one 
name into the commandline (perhaps to add parameters) or simply run it right from the 
list.

Related Topics:
Submitting Commands



Keep Explorer In Sync With SmilerShell/95 
Automatically
 
You can set the Sync With Explorer toggle switch to keep Explorer's current directory 
synchronized withSmilerShell/95.    You won't believe how convenient this is.      Instead 
of clicking all up and down the file manager's directory tree, you can issue a DC 
command by typing just a few letters of the endpoint target directory.    Not only will 
SmilerShell/95 change its own current directory, it will change Explorer's displayed 
current directory, too (the top instance of Explorer if more than one is running).    
Explorer will flash for a moment on the screen to remind you that the synchronization 
hook is in place.    Toggle this feature with the Options menu item Sync With Explorer, 
or just type Alt+E.

It also works fine when you change directory with CD.    And to allow complete flexibility, 
you can change Explorer's directory in the usual way without affecting SmilerShell/95.    
That is, SmilerShell/95 will change Explorer, but Explorer won't change SmilerShell/95.

Related Topics:
The DC Command
The Options Menu




